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Abstract
In June 2018, more than 68.5 Million people across the globe were reported to be fleeing war

or persecution. Within the United Nations, UNOSAT is the organ in charge of collecting demo-

graphic information based on satellite images of refugee camps to ensure reliable UN operations

providing shelter, food and medicines to refugees and internally displaced people. This work aims

at assisting UNOSAT analysts by providing them with an automated shelter detector to increase

their efficiency and quality of the analysis.

The tool is developed in two phases. The first one consists of generating polygon masks of

shelters using single point location generated by UNOSAT analysts in the past 10 years. The

second uses the newly generated dataset to develop a model detecting multi-class shelters in

new camp images without any analyst data.

This report describes the model developed for the first phase of the project. It consists of a fine-

tuned Mask R-CNN conditioned on analyst point shelter locations. On average, the tool achieves

a recall of 88% and a precision of 81% compared to a human annotated shelter. A user-friendly

interface allows the usage of the tool with a command line one-liner. Its usage is summarized in

the report and detailed in the Github Repository. The latter also contains the entire python code

of the developed tool.

The results of all experiments are reported and the weaknesses of the model are discussed.

Finally, possible further improvements and next steps required to achieve the development of the

automated shelter detector tool are reported.
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1. Introduction
In June 2018, the World Health Organization reported the highest number of refugees in Human

History: more than 68.5 Million people across the globe are fleeing war or persecution [4]. Having

left their home, a high percentage of refugees and internally displaced people (IDP) live in refugee

camps. Due to the urgency of the situation, the lack of financial means, and the important influx

of refugees, camps are often chaotic and poorly documented. It is difficult to keep track of (1)

where refugees settle, (2) how many they are, (3) in what living situation they are.

In that sense, satellite imagery analysis is a very powerful tool which enables the collection of

accurate, regular and up-to-date information about camps in a trustworthy and secure way. UN-

OSAT, a subdivision of UNITAR located at CERN, is the office responsible for providing this type

of information to the United Nations (UN). It consists of a team of highly trained analysts which

analyze high resolution satellite images to respond to humanitarian disasters and provide rele-

vant information for the UNs on field operations. UNOSAT is not limited to collecting data about

refugee camps, it also responds also to other humanitarian disasters such as floods and damage

assessment in conflict zones. In the case of refugee camps, analyst count and mark shelters

locations. Such information help evaluate objectively the population distribution of the camp (and

its evolution) and can be a usefull proxy to determine how many refugees live in the camp. In

turn, such numbers are highly valuable for UN field operations. For instance, to send the right

amount of equipment, medications, and sanitary installations to locations which need it most.

Nevertheless, the steady increase of refugees over the last 15 years has led to a challenging

situation for UNOSAT. Namely, it has become intractable to keep up with the data requested by

the UN using traditional analysis methods. The project described in this report has the pragmatic

objective to increase UNOSAT’s throughput by alleviating analysts’ workload, as well as provid-

ing additional valuable analysis data which cannot be collected by traditional methods. The rest

of the report is structured as follow: first, the issue with current manual tools for analysis is ex-

plained, challenges for automation are reported and the scope of this project is specified. Next,

a short litterature review of automated shelter detection is provided as background. Thereafter,

the method of the envisioned approach, with its different models and software/hardware require-

ments, is described at length. The different undertaken experiments are then reported, followed

by their results. Fulfilment of the defined goals for the project are additionally discussed. Finally,

further research directions are provided. A short conclusion at the end summaries the different

findings and core points of this report.

Automated Shelter Recognition in Refugee Camps 8
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2. Problem Statement
Camps often consist of more than 10 000 shelters and are sometimes analyzed several times to

monitor their evolution. Despite providing a very high quality output, manual analysis is time con-

suming, cumbersome and expensive. Indeed, an analysis can easily take up to several days for a

single camp. Using a software called ArcGIS, an analyst inspects each region of a high-resolution

satellite image and marks each refugee tent with a dot in the center of the tent. Sometimes, addi-

tional information is also recorded, such as the type of shelter or the satellite image it was taken

from. This data is then stored in a shapefile vector layer which encodes the geocoordinates of

each shelter along with the information associated to it.

Automated shelter detection can help reducing drastically the time required for each analysis.

In the following subsections the requirements for such an automated analysis are described,

followed by a summary of the difficulties associated with remote sensing for the development of

such an automated process. Finally, the proposed pipeline for the development of the tool is

presented and the scope of this specific project within this pipeline is defined.

2.1 Objectives

In 2013, Tiede et al. published a list summarizing the requirements for the adoption in practice

of an automated shelter recognition system [13]. The key points included : (1) the ability to use

the algorithm on different camp images taken with different sensors, (2) the ability to implement

and deliver high quality performance in real-world and real-time scenario’s, (3) The ability to

validate results, especially reflecting end-user’s needs. Being a direct collaboration with UNOSAT

analysts, the aim of this project is to ensure the above-mentioned criteria are fulfilled such that

the algorithm can be used for operational purposes. Hence an expanded and more specific list

of requirements and objectives is defined below for this project, based on Tiede’s critiria:

– The system can detect tents and refugee shelters with a recall and precision higher than

90% in different camps using different satellite sensors.

– It should be capable of identifying different types of tents: eg. refugee shelter, administration

building, etc.

– The system should be able to run with highly flexible input image types. I.e. with images of

sizes up to 6-8 GB, with different number of bands (1-8), and using dataformat ranging from

uint8 to unit32.

– The tool should be able to provide output in shapefile format ( .shp); the format used in the

Automated Shelter Recognition in Refugee Camps 9
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remote sensing community.

– The software must be embedded into an easy-to-use tool for UNOSAT analysts, which do

not possess prior knowledge of command line and software engineering.

– Due to funding limitations, the algorithm should be runnable on desktop computer (possibly

with 1 GPU of type Nvidia GTX 1080 or similar graphic card).

2.2 Field Challenges

There are many challenges associated to the field of remote sensing which complicate automa-

tion. These difficulties also partially explain why, to the authors best knowledge, no automation

tool satisfying the above-mentioned criteria has been developed until now.

2.2.1 Data Scarceness

High resolution satellite images are expensive, submitted to strict licenses and hard to obtain.

UNOSAT has access to several databases of satellite images. Nevertheless, the total number of

refugee camp images possessed by UNOSAT is estimated to be between 100-150. Each camp

image can cover an area of 2-25 km2 englobing the entire refugee camp and its neighborhood.

For many automation techniques such as machine learning and deep learning, 100 to 150 images

is very few and hardly enough to obtain the aforementioned performance.

2.2.2 Resolution

Indeed, satellite images come with different resolutions, depending on the satellite sensor they

were taken with. For the considered application, resolution of images considered vary between

20cm and 80cm. Refugee tents can be of sizes down to 1.5 x 1.5 m, which thus translates to

2x2 pixels in the worst case. It is understandably difficult to develop a tool which can detect such

small objects in images with high precision and recall.

2.2.3 Band Variety

Similarly to ordinary images, satellite images are composed of different spectral bands. Depend-

ing on the satellite, the image can be monochromatic (that is, the image has one band and looks

like a black and white image), Red Green Blue (RGB), or multispectral. In the latter case, images

can have 4 to 8 different spectral bands, such as the Near Infrared (NIR) band, etc.

Just like objects are of different colors in the RGB spectrum, they can different response to other

spectral bands. For example, vegetation tends to reflect NIR while a metal structure may absorb

Automated Shelter Recognition in Refugee Camps 10
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Figure 2.1: Illustration of the shelter variety in terms of shape, size, color, resolution.

it. Thus, in principle, the more bands an image has, the better, since it conveys more information.

Nevertheless, not all images have the same number of spectral bands, and there is no standard

into which part of the electromagnetic spectrum the band should cover. So even among images

with the same number of bands, these bands do not per say correspond to the exact same part

of the electromagnetic spectrum. In addition, no neural network has been found to be pretrained

for images with more than the 3 usual spectral bands (R,G,B). This makes it challenging to take

advantage of the extra information encoded in the bands, or even to develop a tool which can

deal with varying number of bands.

2.2.4 Shelter, camp and image variety

As illustrated in Figure 2.1, tents from different camps can be very different in size, color and

shape. Some tents can be as small as 2x3 pixels (approx. 1.5x1.5m) while others are in fact

buildings which span areas of hundreds of pixels. Colors can vary from bright white (eg. UN

disaster relief tents) to dirt brown (shelters made out of dried mud). Shelters can be rectangular,

oval shaped, circular, and combinations thereof.

At a camp level, some are very dense and chaotic whereas others are spread over large areas

with low shelter density. In addition, depending on the angle at which the satellite was when it

took the picture, the time of the day, the season of the year, the exact same camp can look very

different on two different images. An illustration of these principles can be found in Figure 2.2.

In addition to atmospheric interference, all these factors contribute to a high level of noise in the

images, which further increase the difficulty of the task, even for human beings.

Automated Shelter Recognition in Refugee Camps 11
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Figure 2.2: Illustration of the camp variety in terms of density, season, time of the day.

2.2.5 Multi temporal point data

Specific camps are mapped on a regular basis, and evolution of the camp is analyzed. This

requires the comparison of several images of the same camp. To ease this process, images are

sometimes slightly shifted through imaging processing techniques within the ArcGIS software.

Nevertheless, the same shapefile is used to save the point location of the shelters. This results

in point location which may be shifted from the original image. Hence the point location cannot

be used anymore with the other (more recent) images of the camp.

2.3 Proposed Pipeline

To develop an automated shelter recognition software, a two steps pipeline is proposed. The

process flow is illustrated in 2.3.

The first step, aka Point-to-Polygon step, consists in generating polygon masks for each shelter

in camp images using the point data generated by the analyst. In other words, the algorithm

seeks to determine the shape and area of the shelter using the point data as starting point or

hint for the location of the shelter. This important intermediate step toward the final goal of a fully

automated system is important in several ways. It provides a way to generate a high amount of

training masks which can thereafter be used to train the final algorithm to have an end-to-end

system. Indeed, the lack of training data is one of the major issues preventing the development

Automated Shelter Recognition in Refugee Camps 12
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Figure 2.3: Proposed pipeline for the development of an automated shelter recognition system.

The first step is the specific scope of this project. It consists in using the available database

of point data (yellow points) with its corresponding satellite image and the very few available

polygons to create more polygons (from which the name originated: point-to-polygon).

of a fully automated system right away. However, UNOSAT possesses a large number of images

for which point data was generated over the last 10 years by analysts. By generating shelter

masks for all the images in this database, a large training set can be generated for the second

step of the pipeline. Nevertheless, the point-to-polygon algorithm is already very valuable for the

analysts, as it provides a more accurate estimation of the shelter area; a valuable metric to the

UN to estimate living space per refugee, etc.

The second step, aka end-to-end algorithm, consists in finding tents in new camp images without

any point data. To this end, the large shelter masks dataset previously generated using UNOSATs

point database is used to train, validate and evaluate the end-to-end algorithm.

2.4 Specific Scope of this Project

One of the most important steps of this pipeline is the first one, as no reliable end-to-end algorithm

can be developed without a high-quality training dataset. Hence this summer internship focused

exclusively on the development of the point-to-polygon algorithm. The objectives specific to this

step are the following:

1. Within approx. 8 weeks, develop an algorithm providing a shapefile with shelters masks

using as input point data and satellite image, with a minimum average recall and precision

of 80 % with respect to human annotated shelters.

2. Make the algorithm as flexible as possible for different image types (uint8, uint16, etc.), size,

number of bands, tiled images, etc.
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3. Package the algorithm in an easy to use software for UNOSAT analysts.

Before discussing the method used to achieve these objectives, a brief literature review is pro-

vided in the following chapter. A summary of similar projects are reported and the state of the art

using both classical machine learning and deep learning approaches are discussed.

Automated Shelter Recognition in Refugee Camps 14
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3. Related Work
Automated shelter recognition in refugee camps is not a new topic. Nevertheless, methods used

for shelter recognition have significantly evolved in the last 15 years. An overview of this evolution

is provided in this chapter, along with analogous yet unrelated automation challenges.

In 2003, Giarda et al. published a paper on automated shelter recognition in Lukole refugee

camp, Tanzania [7]. Giarda et al. investigated four different classification techniques; supervised

classification (maximum likelihood classifier); unsupervised classification (ISODATA clustering);

mathematical morphology based on shape and contrast (combination of image processing tech-

niques including opening, closing, filtering, thresholding) and finally multi-resolution segmentation

(weighted average of several factors to segment tents in both panchromatic and multispectral

images). The latter two techniques achieved impressive results. Namely, spacial accuracy of

approx. 85 % (omission and commission error below 15%) in the sampled areas and an overall

shelter count in the camp with a statistical accuracy of 97%. However, these techniques all require

significant tuning and a priori knowledge about the image (average size of shelter, shape, mini-

mum size of shelter for post processing thresholding, etc.). Moreover, they are highly dependent

on contrast and colors, shadow, which makes it almost impossible to use the same parameters

for a different refugee camp. This lack of robustness has limited their effectiveness in practice

and adoption amongst remote sensing analysts.

Three years later, Laneve et al. published for the first time an automation algorithm for shelter

recognition applied on more than one camp image (Goz Amer, Lukole, Mille) [11]. The authors

used a mathematical morphology analysis to extract the refugee shelters. Several algorithms

were investigated, including using structual elements with defined shape and size; a combination

of PCA to extract multispectral information with Watershed floodfilling segmentation. Achieved

accuracy in the investigated sample areares is of approximately 80-90 % depending on the al-

gorithm. This paper brought another innovation: namely the authors did not only comment on

shelter count, but also reported their findings about the ”shelter mask” to estimate the area of

each shelter, and how this can be used to better estimate the refugee population. This concept

has been of great importance for one of the developed algorithm in this project and is further

expanded upon in the following chapter. Nevertheless, the authors report themselves that the al-

gorithms are very dependent on the fact that the chosen samples are ”well behaved”. I.e., these

techniques remain difficultly usable in practice.

A more quantitative investigation of the robustness problem is described in [14, 12]. Their al-

gorithm consists of a sophisticated pipeline including a combination of rules, edge detections,

thresholds, filtering, etc. Authors report that although their automated algorithm detected ¿ 90%

of the bright tents and ironed-roofed shelters, performance decreased significantly to ¡ 60% on
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traditional huts and dust-/sand-covered tents.

In recent years, Neural Networks (NN) have attracted considerable attention due to their gen-

eralization capabilities and robustness for object recognition. In particular, Convolution Neural

Networks (CNN) and more specifically mask-RCNN have gained wide acceptance for robust ob-

ject detection and segmentation in every day life images [9]. They thus are ideal candidates

to develop robust tools for automatic shelter recognition in satellite images. However, literature

about the specific application of NN to shelter recognition is scarce. In fact, no publication has

been found on this specific topic at the beginning of this project (June 2018). Nonetheless, several

similar issues are illustrated in the literature.

In 2017, Guirado et al. published a comparison between CNNs and Object Based Image Anal-

ysis (OBIA) for shrub detection in Google Earth satellite images [8]. OBIA is a set of standard

tools using algorithms similar to the previously described algorithms, and additional segmenta-

tion algorithms such as k-nearest neighbor, support vector machines, etc. Using an improved

ResNet-based (a specific CNN architecture), they were able to achieve F1 scores of 96.5 and

93.4% compared to 92.9 and 77.3% respectively for the best performing OBIA model.

More analogous to this project, crowdAI – a plateform hosting Artifical Intelligence challenges

– organized a house mapping challenge from satellite images, which ended at the same time

as this project (August 2018) [1]. The winning solution achieved approx. 94% average recall

and average precision at IoU >= 0.5, using an improved version of a U-Net, along with data

augmentation.

Although houses are much bigger and easily identifiable than most refugee tents, it can be hy-

pothetized that NNs can achieve high performance in automated shelter recognition. In addition,

their robustness and generalization capability are promising factors which will enhance their po-

tential transfer to different camps and sensors. Hence NNs are the main investigated technique

in this project, although a classical unsupervised method has also been explored initially, seeking

to take advantage from the point data. In the following chapter, the pipelines and methods used

for the development of the point-to-polygon software are describes in length.
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4. Methods

The concept behind the point-to-polygon algorithm is summarized in Figure 4.1: Using the point

data collected by the analyst to predict the shape (polygon) of each corresponding shelter. The

concepts behind the engineered pipeline to achieve this is presented in the following section.

Thereafter, software and hardware tools and packages are described.

Figure 4.1: Summary of the concept behind the point-to-polygon algorithm and software tool.

4.1 Pipeline: Concepts

A high level schematics of the pipeline is presented in Figure 4.2. It consists of three major steps:

1. Image preparation : This step consists in going from raw camp images to processable

images for the algorithm.

2. Model : The core algorithm chosen to predict the polygons from images.

3. Predictions post-processing : This step takes raw predictions and transforms them to

usable data for analysts seeminglessly.

Each step is detailed below for a thorough understanding of the pipeline.
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CERN openlab Report 2018

Figure 4.2: Point-to-polygon pipeline. First, images are prepared (green) from raw camp tiles /

images and point-data information is encoded to help the algorithm. Next (orange), images are

fed one by one in to the core algorithm, which predicts a polygon for each shelter. Finally (blue),

predictions are assembled and formatted to a single .shp file. For more details, cf. subsections

4.1.1, 4.1.2, 4.1.3.

4.1.1 Image preparation

The first preparation step is preformatting, i.e. transform the raw satellite image type to a pro-

cessable image type for the model. High resolution satellite images are usually stored as GeoTIFF

files with the file extension .TIFF or .TIF (stands for Tagged Image File). This flexible file type en-

ables lossless compression of high quality rasters along with information about the image (called

metadata).

An important attribute of the metadata for GeoTIFF images is the CRS (Coordinate Reference

System) along with the GPS coordinates of the image itself. Indeed, many different coordinate

systems exist and it is important to know which one is being used when superimposing the image

for example with vector layers (eg. point-data). Therefore, CRS have to be checked and images

reprojected if different CRS are used for point-data and satellite images.

Additionally, the metadata lists the number of rasters (bands) in the image. This information is

crucial to develop a flexible algorithm allowing images with different numbers of bands at the

input yet predicting polygons correctly. Consequent band reduction / expansion must thus occur

to ensure all images given to the model have the same number of bands.

Finally, unlike every day life images which are usually stored in uint8 data type (the intensities in

each band vary between 0 and 255), satellite images can be store in many different datatypes

such as uint8, uint16 and uint32. Unfortunately, common python image processing packages such as

openCV do not always handle these datatypes. Moreover, computation is much more expensive

when using higher resolution datatypes. Adequate datatype handling must thus occur to set all
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images to the same data type. In this process, several streching techniques can be used to utilize

the entire spectrum of the datatype.

Thereafter, one needs to choose how the point data information can be encoded/ given to the

algorithm to ease the prediction process of each tent. This process is of course dependent on

the algorithm itself. Therefore, this step is explained further for each of the models reported in

subsection 4.1.2.

Next, satellite images are usually very large in size. They can be millions of pixel wide (up to

6-8 GB in file size). Processing these images in one step is simply not possible in terms of RAM

memory. An additional tiling process is thus required before feeding images into the model. Great

consideration has to be taken in this process as tiling the image can result in tents being devided

over 2 to 4 different tiles. Not only can this make the task more difficult for the algorithm, but

it also makes the reassembly of the predictions in one single image more difficult (necessity of

merging semi/quarter tents, etc.).

A rather intuitive approach is to have a sliding window with an overlap between two subsequent

windows, and where predictions are ignored near borders. A simpler approach is to process shel-

ters one by one, by creating one mini-tile centered on each shelter of the image (cf. Figure 4.2)

and telling the algorithm to predict the polygon for the shelter on which the mini-tile is centered.

This can be done as point data is provided for each shelter in the image. This method has two

advantages. On the one hand, it solves the assembly problem: each shelter is predicted individ-

ually and they can easily be reassembled in one filed. On the other hand, it is an implicit way of

encoding the point information about the location of the shelter for the algorithm ; i.e. there will

always be one shelter to predict and it will always be in the center of the tile.

Finally, once images are tiled, they can be preprocessed (eg. contrast enhancement, etc.) and/or

used for data augmentation depending on the chosen model (more information is provided be-

low). The images are then ready to be fed to the predicting algorithm.

4.1.2 Model

Two types of algorithms have been investigated.

Firstly, traditional unsupervised imagery algorithms have been applied to find the tents. These

algorithms have the advantage of having a low computing complexity, and therefore can be per-

formed on any laptop with low computation capabilities, at a very high processing speed and

without any training. Nevertheless, the downside of these algorithms is that they require lots of

manual tuning and are poorly generalizable. In fact, this is the issue which led to the focus on

another method.

The second type of investigated algorithms are CNNs. These show properties which are opposite
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Figure 4.3: Illustration of predictions made using unsupervised segmentation algorithms. (a).

Naive watershed prediction of the center shelter on the tile. The prediction is accurate. (b). Com-

bination of watershed and clustering algorithm to improve noisy predictions: the noisy prediction

generated in step (2) is passed through a clustering algorithm (3) and only the seed cluster is

kept (4). Prediction is still far from perfect yet better than before clustering.

to the aforementioned method: they have high computational cost and require GPU training.

However, they can generalize to different intensities, tent shapes and colors much better than

their traditional counterpart.

Below, the two types of algorithms and their implementations are discussed in further details.

Unsupervised Algorithms for Shelter Prediction

The simplest unsupervised algorithm for image segmentation is thresholding. Nevertheless, it

often requires very fine tuning in satellite images due to the high level of noise, the different colors

involved, and the different satellite sensors utilizing different stretches of the electromagnetic

spectrum. Hence, more sophisticated algorithms were chosen to tackle the segmentation of the

refugee shelters.

First, a watershed segmentation is applied to each tile. Watersheld segmentation is a flood filling

algorithm first introduced by Beucher et al. [6]. The main idea behind it is the following: local

minimas in the image are taken as starting points (i.e. seeds or sources) for image segments,

and flood progressively the entire relief of the image. Barriers are then drawn where the different

growing segments meet.

Automated Shelter Recognition in Refugee Camps 20



CERN openlab Report 2018

The major difference between the traditional watershed algorithm and this implementation is the

choice of the seeds. Instead of using the computed local minimas, which are often subject to

high level of noise, or not always present in a small refugee shelter, the point data provided

by the analysts are taken as seeds for the shelters. This use-case specific modification of the

algorithm:

1. owers drastically the level of noise in the detections,

2. guarantees to have a segment for each identified shelters,

3. enables the separation of difficultly distinguishable neighboring shelters, since 2 or more

seeds will be used.

Examples of watershed predicted shelters are provided in Figure 4.3.

Nonetheless, as visualized in Figure 4.3 (b), each individual segment can still be subject to noise.

Hence a clustering algorithm (in this case, DBScan) is used as filter to select only the main cluster

including the seed, to ensure compactness of the prediction. This method has been prefered to

more the simpler ”opening” technique, as the atter made the prediction often disappear when

acting on the many very small shelter (3-8 pixels).

Mask R-CNN for Shelter Prediction

The shelter segmentation using neural networks was performed by doing transfer learning from

object detectors to learn segmenting refugee shelters. Indeed, transfer learning is adequate for

the project as it requires less training and less labelled images than when training a network from

scratch.

Nevertheless, transfer learning also adds constrains to the model. For example, it complexifies

the architecture changes to the model. For instance, the number of input channels. Most pre-

trained networks (including the one used) are trained on standard RGB images, or B/W images

which are then transformed to RGB equivalent images. The network thus has 3 input channels.

However, as explained above, satellite images can have up to 8 different channels, all of which

contain relevant information to the detection of shelters. Navely adding many branches to the

network results in unpredictable and often unstable networks, as too many weights are retrained

from scratch. Moreover, the number of input channels varies with the image. And while trans-

formations exist to convert B/W single channel to RGB and vice-versa, transformations to higher

dimensions is not trivial, if even possible. Therefore, it was chosen to remove any additional

channel and keep only the 3 standard RGB channels for each image.

For compatibility issues with the parent project, the Detectron framework was used to this effect.

As backbone, a Resnet 50 with FPN has been chosen as it delivered a good tradeoff between

performance and required training time.

Automated Shelter Recognition in Refugee Camps 21



CERN openlab Report 2018

4.1.3 Post-processing

Once tents have been predicted on each individual tile, they have to be reassembled into one

single .shp file to satisfy end user’s needs. Before performing this formatting step, the point-to-

polygon software performs an evaluation upon its own predictions. Interestingly, although predict-

ing the shelter correctly is not always simple, the assessment of the quality of a prediction can be

easier.

For instance, predictions which are too small (eg. fewer than 3 pixels) or too big can be labeled

as suspicious predictions. More elaborate tests, such as the Polsby-Popper test can also be

performed. Originally developed to assess the degree of gerrymandering of political districts, the

Polsby Popper gives a score between 0 and 1 for the compactness of a shape [3]. The score is

obtained as follow:

PP =
4π ·A
p2

(4.1)

where A and p are the area and respectively the perimeter of the shape. Indeed, shelters are ex-

pected to be compact, such that shelters with a low Polsby-Popper score can also be considered

as suspicious.

Furthermore, as shelters are predicted individually, overlapping areas can arise when merging

the predictions into one single shapefile. When the overlapping area is big relatively to the size

of the prediction, it is likely that several shelters are included in the overlapping predictions. Al-

though not implemented in the first version of the project, detecting these cases and finding

adequate splitting procedures can help minimize overlaps. A simpler approach is just to label

these predictions as suspicious.

Finally, all suspiciously labeled predictions can be reviewed by the analyst in the first place, which

can then correct the majority of bad predictions more efficiently.

4.2 Hardware

The unsupervised model was run on a simple TL desktop computer with 8GB RAM, 4 CPUs and

ubuntu 16.04 as OS. With this device, approx. 430 shelter tiles (64x64 pixels) can be predicted

per minute (7.2/second). Hence a camp image like Doro 20171111 PL with approx. 12 750

tents can be processed by the algorithm in under 30 min (for the most sophisticated version of

the algorithm). Note that no emphasis was put into optimizing run time, and that the algorithm

can surely be optimized to reduce drastically prediction time. One also has to remember that no

training is required for unsupervised algorithms.

The mask R-CNN model was run on 2 Nvidia GTX1080 GPUs from the CERN TechLab Grid.

The GPUs had respectively 8 and 10 GB RAM Memory and ran under CentOS 7. The model has

also been tested on a Desktop Nvidia GTX1070 GPU with 10 GB RAM under CentOS. Inference
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rate on single GPU (once the model is trained) is about 3000 tiles / min (50 / second) such that

shelters in Doro 20171111 PL can be predicted in under 5 minutes. Note that although some

frameworks allow inference using CPU only, it is not the case of Detectron. That is, Detectron

requires GPU even for inference.

4.3 Software

4.3.1 Requirements

Point-to-polygon is coded in python 2.7. The software can also be called using python 3.6, as

long as python 2.7 is installed and accessible under the command python2. It is strongly advised

to use a virtualenv for the python packages related to the point-to-polygon software. A list of the

packages, as well as a detailed installation procedure can be found in the Github repository under

requirements.txt and doc/ installation .md respectively.

For the mask R-CNN, a modified version of the Detectron Framework developed by Facebook

AI was used. The modified version is also included in the point-to-polygon repository. Detectron

relies on caffe2, an AI library, which has to be installed separately. Good luck in installing it from

source: it is a mess!

4.3.2 Usage

All required information about the software can be found in the Github repository. Instructions to

use the point-to-polygon software are also provided. In short, as long as the correct packages

are installed and the directory structure abode for, polygons can be generated from raw images

using the following one liner in the terminal:

# launch the f o l l o w i n g command from the base d i r e c t o r y :
python2 polygon maker . py <base−d i r> <output−d i r>

Where <base−dir> is the main working directory where all the scripts are stored and <output−

dir> the directory in which you want to store the predictions. In addition, the images needed

to be processed should be specified in the configs/config dataset.yaml, otherwise all images will be

processed. To get information about which additional flags can be used, type python2 polygon maker

.py −h.
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5. Experiments
At first, this chapter provides details about the datasets and parameters used for training, val-

idation and testing. Various statistics are provided about satellite sensor type, tent categories,

etc. Next, a description of the noticible experiments is provided. Finally, the metrics used for

evaluation are explained.

5.1 Dataset

The UNOSAT database regroups circa 100 refugee camp images, collected from approximately

25 different camps. Nevertheless, only 12 of these images have polygonized shelters which can

be used for training and evaluation. 8 were used for training, 2 for validation, 1 for testing and the

remaining one was just used to control visually as it did not have corresponding point data and

hence could not be used in the pipeline. A more detailed description of the training, validation

and test sets is provided in Table 5.1. Statistics about the sets are displayed in Table 5.2. In the

latter table, structure types gives an idea of the different classes UNOSAT gives to the structures

found in refugee camps. The ideal end-to-end shelter detector should thus be able to recognize

the different shelter types. Nevertheless, in this project all structures are considered as part of

the same class.

A longer list of dataset has been created and can be found in the point-to-polygon archive under

dataset>created datasets. There are not available in the github repository. They were gen-

erated using the script create cropped dataset.py and its corresponding config file: configs>

config dataset.config. This script also generates coco-style annotations which encode shel-

ter information (such as geocoordinates for remapping to the shapefile), and ground truth of the

corresponding polygon for evaluation when available. Note that, since polygons and point data

were created independently and by different humans, some points do not have a corresponding

polygon, and vice-versa. In fact many shelter lacked polygons. Either because the point was

out of the shelter and therefore does not fall within a polygon, or because not all shelters have

been polygonized in the image. The script skipped all shelters in this situation. The numbers

displayed in Table 5.1 and used thereafter are thus the successfully annotated shelters only.

More details about the creation of the various datasets can also be found in logs under logs >

create cropped dataset.*.log.

Note that the ground truth itself is sometimes of poor quality. This poor quality is caused by (1)

badly annotated shelters due to human laziness, (2) shelters cropped on screens (tiles) of human

annotators, (3) shelters difficulty discernable even for humans, and finally (4) intrinsically due to
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Table 5.1: Images used in the training dataset. Hyperlinks are given to the locations of the images

and corresponding point data.

Image Name Image Date Satellite Vector Point Shelters

Training Set 53 028

Yida 6June2017 w3 June 6th 2017 WorldView 3 Yida 10 305

Doro 20171111 PL November 11th 2017 Pleiades Doro 1 8 111

Doro 20131214 WV02 December 14th 2013 WorldView 2 Doro 2 11 831

Nyal 20170108 WV03 08 January 2017 WorldView 3 Nyal 4 191

Wau 20161215 WV03 15 December 2016 WorldView 3 Wau 3 415

AjouonTh 01Apr17 WV1 01 April 2017 WorldView 1 Ajouon 12 501

Muna 20160905 WV3 5 September 2016 WorldView 3 Muna 2 176

Ngala 9nov2016 w2 Nov. 9th 2016 WorldView 2 Self made 498

Validation Set 12 756

Ganyel 20170108 WV03 08 January 2017 WorldView 3 Ganyel 2 910

Juba 08Feb2017 WV03 Feb. 8th 2017 WorldView 3 Juba 9 846

Test Set 2 518

HTCCamp 20161226 Dec. 26th 2016 WorldView 1 HTCCamp 2 518

the small size of the shelter, a slight difference in pixels can induce a significant difference in

metrics. It is thus important to remember performance is negatively biased.
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Table 5.2: Detailed description of the characteristics of the training, validation and test sets.

Percentages indicate the fraction of the dataset which has the characteristic described in the left

column.

Characteristic Training Validation Test

# shelters 53 028 12 756 2 518

# camps 8 2 1

Satellites
WV1 23.6 % - 100 %

WV2 21.2 % - -

WV3 39.9 % 100 % -

PL 15.3 % - -

Structure Types
Tent Shelter 90.7 % 78.5 % 100 %

Improvised Shelter 0.6 % - -

Semi-Permanent Structure 6.1 % 17.3 % -

Admin Building 2.0 % 3.2 % -

Metal Structure 0.6 % 1.0 % -

5.2 Important parameters

All parameters used in experiments can be found in the config files and/or in corresponding log

files. Important parameters which stayed constant in most experiences are the following:

– crop size: 32. This is the number of pixels which are taken left, right, above and under

the point data to delimit the size of the tile. For almost all experiments, tiles of 64x64 pixels

were used. Note that this resulted in bigger buildings being sometimes cropped.

– crs: EPSG:4326. This is the Coordinate Reference System. It is used at several occasions,

such as when reprojecting the predictions to a shapefile. The current version of the project

does not fully support other Coordinate Reference Systems.

– bands: 1, 2, 3. This corresponds to the band selection when the image has more than 3

bands. The standard R, G, B channels are used. When the image had only 1 band, a

transform to a RGB equivalent was performed.

5.3 List & Description of Experiments

The following list summarizes the different experiments and their purpose. Watershed experi-

ments were run at smaller scale while the neural network experiments were run on the entire

datasets.
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1. Baselines:

(a) Square Tent Model: The first baseline consists of assuming square tents centered at

point data providen by analysts. The side length (15 px) was chosen by evaluating all

possible lengths between 5 and 20 px and retaining the length which yielded the best

scores.

2. Watershed
(a) Naive watershed: Contrast enhancement as preprocessing followed by naive water-

shed algorithm with location point data provided by the analysts as seeds.

(b) Improved seeds & custering: The watershed algorithm is very sensitive to the exact

location of the seed. Nevertheless, humans do not always place the seed within the

exact boundaries of the shelter, especially when it is small (4-20 pixels)! This results in

completely wrong predictions since the seed of the segmentation is then located in the

background instead of the shelter. In this version of the algorithm, a seed improvement

algorithm is added. Starting from the point data, the seed is iteratively moved up

the gradient of neighboring intensities to find the local maxima of the nearby shelter.

This assumes tents are brighter than the background. Note that this assumption is

taken throughout the watershed experiments. A clustering step is added at the end to

diminish the noise in the mask output and thereby boost precision of the model.

3. Neural Network:

(a) Labeled All Instances: Most straight forward application of transfer learning. The pre-

trained network is fine-tuned on refugee camp images where all shelters are labeled.

(b) Center Focused ResNet50-FPN: Only the center shelter is annotated, such that the

network learns to focus on the central part of the image. This also eases the fusion

of the prediction in the final shapefile, avoiding having to fuse shelters separated on

different tiles.

(c) Network Conditioning: Investigating how the network can be conditioned by the data

provided by the analyst to increase the precision and recall of the predictions. A rela-

tively explicit way of encoding the information is simply to color each pixel correspond-

ing to a point in the vector layer with a color that is very unlikely to be in the image (eg.

bright red). The hypothesis is that it should help the network distinguish two neigh-

boring shelters located near the center of the image. Another possibility is to feed an

extra raster to each image at decoding time. Nevertheless, this introduces new weights

which have to be trained from scratch and has thus not been performed here.

5.4 Metrics for evaluation

The use of the point data provided by analyst ensures an omission and commission error of 0%

relative to human analysts. Therefore, these metrics are not appropriate for the investigated task.

Rather, a pixel-level metric is required to evaluate the quality of the predictions, with respect to

human polygon annotations.

Automated Shelter Recognition in Refugee Camps 27



CERN openlab Report 2018

To UNOSAT, the most important aspect is that no shelters / shelter-parts are left undetected.

Indeed, shelters/ shelter areas are often used as proxy to evaluate the number of refugees in a

camp. Therefore missing out on shelters leads to underestimating the number of camp inhabi-

tants, which can yield devastating consequences. Recall is a good metric to measure whether

predictions cover the entire area of corresponing shelters. It is defined for each shelter as fol-

lowed:

R =
prediction ∩ truth

truth
(5.1)

In words, it corresponds to the intersection area between the prediction and the true shelter,

divided by the area of the true shelter. Hence if the prediction covers the entire true shelter,

intersection will be equal to the area of the true shelter and recall will be 1. Respectively, if

no prediction is made the intersection will be 0 and thus recall will be 0. Average Recall (AR)

corresponds to the recall averaged over all predictions.

Nevertheless, AR cannot be used as sole metric. Indeed, if a sufficiently large square is used

as prediction for all shelters, the intersection with the ground truth will always be 1 and thus

average recall will be 1 although the total area of the predictions is completely wrong! Precision
addresses the latter problem; it corresponds to:

P =
prediction ∩ truth

prediction
(5.2)

Namely, the intersection area between the prediction and the true shelter, divided by the area of

the prediction. Therefore precision is lower than 1 as soon as the prediction covers too much

area with respect to the true shelter. Analagously to AR, Average Precision (AP) corresponds to

the precision averaged over all predictions.

The goal is obviously to achieve both high precision and high recall for each shelter. To this effect,

recall and precision can be combined in different ways:

– F1-score: this is the geometric mean of precision and recall. It is computed based on the

following formula:

F1 =

(
P−1 +R−1

2

)−1

(5.3)

where R and P correspond to recall and precision respectively. Again, it can be averaged

over all predictions to obtain the Average F1-score. The latter provides a good insight into

the average performance of the model, where precision and recall are weighted equaly. An

average F1-score of 1 corresponds to a perfect match between predicition and truth for all

shelters in the dataset.

– Intersection over Union (IoU): IoU corresponds to a more complex relationship between

precision and recall but can also simply be seen as:

IoU =
prediction ∩ truth
prediction ∪ truth

(5.4)

IoU is also qualitatively illustrated in Figure ??. IoU is often used as metric in object detec-

tion. The difference between F1 and IoU is well explained here [2]. The main point is that

Automated Shelter Recognition in Refugee Camps 28



CERN openlab Report 2018

the average F1 score describes well the average similarity between predictions and ground

truths wereas IoU is a better measure for the worst case similarity between predictions and

ground truths.
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6. Results & Discussion
The results of the aforementioned experiments are reported and discussed in this chapter. A

summary of the results is to be found in Table 6.1. Visual examples of predictions using the best

model are presented for Ganyel and Juba in Figure 6.1 and 6.2 respectively.

Table 6.1: Results of all experiments. Best scores for each metric are in bold. AP and AR stand

for Average Precision and Average Recall respectively.

Experiment AP AR F1 IoU

Baseline

Square Tent Model (15x15 px) 65.1± 20.5 80.8± 18.0 67.8± 12.6 52.6± 14.0

Watershed

Vanilla watershed 62.9± 33.5 68.8± 30.0 47.8± 25.1 38.3± 20.0

Improved seed & clustering 66.1± 30.5 68.9± 28.6 53.6± 24.2 44.0± 25.8

Mask R-CNN

All Instances Labeled 78.5± 20..2 89.1± 10.8 81.4± 15.2 70.9± 18.0

Center Focused R-CNN 78.2± 19.3 89.7 ± 10.4 81.4± 14.4 70.7± 17.3

Conditioned 80.7 ± 17.6 88.0± 10.8 82.4 ± 12.7 71.7 ± 15.5

The reported baseline already achieves a relatively high recall, meaning the square predictions

cover usually most of the ground truth shelter. To obtain better F1 and IoU scores (representative

for the average and bad performances of the model respectively), a higher precision has to be

achieved.

The vanilla Watershed Model does not achieve better performance than the best baseline. In

an attempt to increase its precision, a seed improvement mechanism and a clustering algorithm

are added to the model. The former is meant to decrease wrong initialization of the watershed

algorithm while the latter restricts the detection to the cluster in which the seed is located to limit

the prediction to a relatively compact shape. The improvements are shown visually in Figure

6.3. Although the Improved Seed + Clustering Model performs slightly better than the Vanilla

watershed Model, it still does not perform as well as the best baseline (Square tent model) on the

validation set. Looking at performance separately for each camp of the dataset allows to conclude

it is due to the poor generalization capability of the model. Indeed, the Watershed Model achieves

+5%, +2% compared to the baseline in AP and IoU respectively in the Juba Camp. However, it

collapses completely on the Ganyel shelters (AP: 54%, AR: 32%, IoU: 9.5%). Ganyel shelters are

very difficult to detect for the Watershed model as the shelters are of the same color (material)
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Figure 6.1: Conditioned Mask R-CNN predictions on camp Ganyel. Shelter density is relatively

low, but shelter diversity is high: shelters are of different colors and shapes, some of which are

very similar to the background color. The network can identify well sheltersin this environment.

Figure 6.2: Conditioned Mask R-CNN predictions on camp Juba. Shelter diversity is low, but

shelter density is high. The network can identify well shelters in this environment, but sometimes

fuses neighboring shelters together.
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Figure 6.3: Clustering and seed improvement allow better performance for the Watershed Mod-

els. From left to right, camp image, vanilla watershed, improved seed & clustering watershed.

One shall notice previously fused predictions are now separated in the improved watershed algo-

rithm.

as the background (or even darker), while the model assumes shelters are brighter than their

surroundings. By contrast, this brightness assumption is verified in camp Juba, where the model

performs well. An example shelter prediction is provided for of each champ in Figure 6.4.

Scores of Mask-RCNN experiments are higher than watershed experiments. This illustrates the

higher generalization capabilities of the RCNN compared to the Watershed Models. The first

Mask R-CNN experiment (with all shelter instances labeled) already yields a significant improve-

ment with respect to the baseline.

By reducing the attention span of the network to the center shelter, a slightly higher average recall

(AR) is achieved (cf. Center Focused Mask R-CNN). Indeed, the network has then less trouble

dealing with partial shelters at the sides of the image and learns better how to recognize the

center shelter.

Average precision (AP) is not as high as AR. Indeed, most common mistakes of the network

consist of fusing several shelters in the same prediction in densely populated areas. This prin-

cipaly happens because shelters can be very close together and the network does not see the

boundary between them. To mitigate this effect, hints are given to the network by providing the

point data of neighboring shelters to the network. This type of conditioning (illustrated in Figure

6.5) indeed increases the AP, as well as the F1 and IoU scores, albeit reducing slightly the AR.

A complementary visual inspection of the predictions reveals the Mask R-CNN is sometimes even

better than human annotators. This is illustrated in Figure 6.6. Hence the obtained results should

be considered as ”worst case scenario”, as the human annotations themselves probably contain

approx. 5-10% variations from real ground truth.

In high shelter density areas, or in areas where tents have an unexpected shape / arrangement,

the Mask R-CNN has a tendency to fuse neighboring tents together. Human annotators can

better distinguish the different shelters. Note that the overall estimated area by the Marsk R-CNN
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Figure 6.4: Illustration of the poor generalization capability of Watershed Models. From left to

right, columns represent the bare image, watershed predictions and mask R-CNN predictions.

The first row camp Juba where tents are bright and easily discernable, and the second row is

camp Ganyel where shelters are darker than their surroundings. While the watershed model

works relatively well in Juba, it collapses in Ganyel. The most occuring scenarios are (1) too

dark tents which yield no valley for the floods filling algorithm to fill (hence just the seed pixel

is marked as tent) and (2) algorithm mistaking background as part of the shelter as they are of

similar colors. By contrast, the mask R-CNN model performs well in both camps.

Figure 6.5: Effect of Network conditioning. From left to right, camp image, mask R-CNN without

conditioning, mask R-CNN with conditioning. Indeed, the second network identifies better the

boundary between the shelters, although the first one already approximately covers the total

shelter area.
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Figure 6.6: Comparison between human annotators and Conditioned Mask R-CNN Model. (a)

Analysts are better at distinguishing close shelters. The Network sees only one shelter. (b)

and (c) Visual inspection reveals predictions can be better than human annotated ground truth.

Reasons include: human laziness (eg. (b), right), human annotation resolution (less vertices

as predictions) (eg. (c)), cropped shelters on annotation tool (eg. (b), left.: both horizontal and

vertical cropping lines are visible in ground truth).
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remains very close to the sum of the shelters identified by human annotators. Again, this lead to

a penality in scoring but does not cause major issues for real case scenarios where what matters

most is the area of the shelters and not the number of shelters.

Practically speaking, if a first prediction round is made by the mask R-CNN and the UNOSAT

analyst spends approximately 30 minutes per camp reviewing densely populated areas, starting

with suspiciously labeled shelters, the UNOSAT ultimate target accuracy of 90-95% with respect

to ”true ground truth” (not human annotations) can be achieved. The target of the tool itself (80%

AP and AR) are in essence achieved.

Nonetheless, several improvements can be made to the model to increase further its performance

and diminish the required review time of analysts. The following are detailed in the next chapter.
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7. Further Improvements and Next Steps
This chapter lists envisioned further improvements to the UNOSAT Automatic Shelter Detection

Project. First, improvements for the model itself are discussed. Next, several pipeline improve-

ments are proposed. Finally, the concrete next important steps of the project are described.

7.1 Improvements

7.1.1 Model

• Architecture: A simple Mask R-CNN has been used so far. Nevertheless, other architec-

tures should be tested. For instance, one could use a U-Net, which often performs very

well in vision tasks when only scarse data is available. It is also the architecture of the win-

ning solution of the Mapping Challenge of CrowdAI [10], which has a similar goal (building

segmentation in satellite images).

• Customized Loss Function: The loss function could be tailored to the application. For

instance, this application-specific loss should penalize more undetected small structures

and penalize the fusing of neighboring shelters.

• Band-flexible Input: As explained above, satellite images often have more than the stan-

dard RGB channels (called bands in satellite imagery). These additional bands offer addi-

tional information which could be used by the network to detect the shelters better. In the

long run, it would also help identify the different types of shelters (different materials with

different scattering to different wavelengths reflect specific bands differently). Clever archi-

tecture designs could be envisioned to allow the usage and training on more than 3 bands

if available. Indeed, UNOSAT has access to many satellite images with up to 8 spectral

bands.

• Data Augmentation: At training time, it could help alleviate the scarceness of data. Sim-

ple augmentation technique such as sheer, brightness, saturation, flip and rotation could

be used to generate more data on the fly. More sophisticated approaches, such as copy

pasting shelters into another camp background image, could potentially help the network

identify a shelter independently of the season, time of the day, inclination of the satellite,

etc. At test time, flipping and rotating images followed by taking the mean of predictions

often helps achieve better results, despite being a non-elegant technique.

• Other Conditioning Methods: Other methods using the point data could be used to con-
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dition the network. As previously mentioned, one could add an additional channel with the

point data. This could also be done in a separate branch at decoding time: one could pro-

vide the point data at each upsampling step of the decoder and force the network to predict

the masks of the shelters on this branch. This method has the advantage of being inter-

pretable as one would be able to observe the expansion of the shelters at each upsampling

stage of the decoder. One could also use other methods, such as providing the number of

tents to be detected (as a scalar) in the image (using the number of shelters detected in

the point data), thereby forcing the right number of detections. This could help reducing the

fusion of shelters.

• Bootstrapping: As observed during evaluation, prediction sometimes become more ac-

curate than the human annotated ground truth. It could possibly improve performance to

gradually allow confident predictions of the network to become the ground truth, and train

further the network on those, in a bootstrapping scheme.

• Self-supervised and Weakly Supervised Models: Instead of using a fully supervised

model where labeled data is the major bottleneck, one could use self-supervised or weakly

supervised models. For instance, one could implement and adapt the MIST Framework.

In this framework, a modified autoencoder is used for both detection and classification in

an image [5]. A weak supervision is introduced by providing the network with the number

of instances to detect, which is precisely what can be achieved using the point data. The

advantage of this approach is that virtually all point data-annotated images can be used for

this task, without need for ground truth polygons. This significantly increases the size of the

available dataset. More over, images which previously could not be used because of the

offset between point data and image could be used in this case as the precise localization

of the points is not used. The encoder of this framework could then be fine-tuned on the

ground truth annotated polygons.

7.1.2 Pipeline

• ArcGIS Tool Development: Transform the Automatic Shelter Detection into an ArcGIS

extension would be an important step to ease the integration in the workflow of UNOSAT

analysts.

• CPU Version: Up to date, the Detectron Framework used by the model requires a GPU,

even in inference mode. Rewriting the model in a framework which can infer on a CPU

would add a lot of flexibility to the tool. Another option is to have the tool run on a remote

GPU. In that case, the appropriate interface should be developed.

• Dynamic Cropping: Up to date, the model evaluates shelters individually and the mini-tile

size is constant for all shelters. This leads to an issue when the shelter is in fact larger/longer

than the mini-tile. To alleviate this issue, a dynamic crop size could be established. Either
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using the ground truth polygon if given, or if by writing the requested tile size in the coco-

style annotation.

• Additional Post Processing: Several post processing steps could significantly improve the

performance of the tool:

1. Tag suspicious shelters: as mentioned in Section 4.1.3, there are techniques to eval-

uate whether a prediction seems plausible or suspicious (eg. shelters which do not

have a compact shape are more likely to be suspicious). By developping further this

tagging system, the analyst could go straight to suspicious predictions and thereby

diminish the time required to review a camp.

2. Shelter splitting: the most recurring error of the network is to fuse shelters together.

Since each shelter is predicted separately, this leads to overlapping prediction. A

simple post processing algorithm could split the fused tents into several when detecting

overlapping predictions (meaning neighbor tents where detected as one).

7.2 Next Steps

The goal of this section is to highlight the concrete next steps to be taken for the project. They

are ordered in a chronological order.

7.2.1 Improve Point-to-Polygon Model

Improve performance of the developed model using recommendations listed above. Not all im-

provements have to be implemented or tested, but several quick fixes will significantly increase

performance. This includes ”Post Processing” and ”Dynamic cropping”.

7.2.2 Generate Multi-class Polygon Dataset

Generate a set of valid polygons which are labeled with the different classes UNOSAT cares

about (using information transfer from the point data shapefile). The set would include the largest

possible set of images listed in Appendix 1. The goal is thereafter to train the network with these

high quality generated polygons to predict the different classes directly from the images.

The desired output is a list of coco annotation-style .JSON file(s) with (a selection of) high quality

predicted polygons and their corresponding labels. Separate the satellite images into expanded

training, validating and testing images. Vary as much as possible in terms of satellite, camps,

shelter types (i.e. similarly to the statistics colleced in Table 5.2).
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7.2.3 Develop End-to-End Shelter Detector

Once the large multi-class polygon dataset is generated, the second part of the project should

be implemented, as explained in Figure 4.2. This will enable the detection of shelters without

any point data required. Most recommendations listed above also apply for this second network.

It is important to integrate the developed model into the ArcGIS software to ensure easy usage

for UNOSAT analysts. Once this step is achieved, all initial requirements of the project will have

been fulfilled.
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8. Conclusion
The United Nations is a key player to support the millions refugees and internally displaced peo-

ple (IDP) by providing shelter, food, medicines and other basic needs. Reliable census and

geographical data is required to ensure high impact of the UN’s operations. Within the UN, UN-

OSAT is the organ in charge of collecting such data based on satellite images of the refugee

camps. However, this task has become increasingly difficult, as the world is currently undergoing

the largest refugee crisis in modern human history, with more than 68 millions refugees and IDP

concerned worldwide.

The goal of this project is thus to provide a user-friendly automated refugee shelter detection

and polygonization tool for UNOSAT analysts. This tool increases the efficiency of their analysis

(camps can be surveyed faster) and the value of the collected data (area of shelters is a better

proxy for inhabitants and living space), thereby allowing analysts to collect better data, faster.

A two step pipeline is proposed to develop this tool. First, a model is developed to generate

polygon masks of shelters using shelter location point data generated by UNOSAT analysts in

the past 10 years. Second, a model is developed to detect and polygonize multi-class shelters in

new camp images without any point data. The previously generated dataset is used to train the

second model.

This report focuses exclusively on the first model. The three requirements have been reached:

1. The model is capable of polygonizing refugee shelters with an average precision of 81% and

average recall of 88%, thus above the 80% AP – 80% AR target. Indeed, higher targets

are not meaningful as the ground truth itself is noisy (noise level estimated to 5-10%), and

fused shelters are penalized although the overall area of the prediction is similar to the sum

of the shelters annotated separately by humans.

A conditioned Mask R-CNN with Resnet 50 is used to achieve these results, trained for 2

days (180000 shelters seen - approx. 3 epoch) on two Nvidia GTX 1080 GPUs.

2. The model is flexible to different input size, image types and number of bands (currently,

only the first three are used for inference).

3. The model is packaged and can be used with a one-liner in the command line after instal-

lation, thereby integrating nicely in the workflow of UNOSAT analysts:

python2 polygon maker . py <base−d i r e c t o r y> <output−d i r e c t o r y>

The main caveat of the tool is that it sometimes fuses neighboring shelters human annotators
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considered separate. Nevertheless, the overall predicted shelter by the tool corresponds well to

the sum of the two manually annotated shelters. In addition, such fusions can easily be mitigated

using a simple post processing step.

The intermediate tool can be used not only to generate the required dataset for the second model,

but also to polygonize any new camp analyzed by UNOSAT analysts in the meanwhile, to obtain

shelter area data.

This tool has the potential to multiply by a factor 10 the number of ground truth polygons available

in the dataset, if run on all the usable satellite images of the UNOSAT database. Moreover, it de-

vides by 200 the time required to create new shelter polygons (compared to human annotators).

In a nutshell, the obtained results not only fulfill the initial requirements but also also establishes

a first benchmark on the UNOSAT mini-validation dataset. Further research and development

will decuplate the impact of the current tool both by improving performance and user friendliness.

In essence, the proof of concept of a reliable, truly automated shelter detection has clearly been

demonstrated and this work paves the way to such a tool for UNOSAT in a near future.
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